Alteration of the substrate specificity of the malonyl-CoA/acetyl-CoA:acyl carrier protein S-acyltransferase domain of the multifunctional fatty acid synthase by mutation of a single arginine residue.

نویسندگان

  • V S Rangan
  • S Smith
چکیده

The structural basis for the dual specificity of the malonyl-CoA/acetyl-CoA:acyl carrier protein S-acyltransferase associated with the multifunctional animal fatty acid synthase has been investigated by mutagenesis. Arginine 606, which is positionally conserved in the transacylase domains of all multifunctional fatty acid and polyketide synthases, was replaced by alanine or lysine in the context of the isolated transacylase domain, and the mutant proteins were expressed in Escherichia coli. Malonyl transacylase activity of the Arg-606 --> Ala and Arg-606 --> Lys mutant enzymes was reduced by 100- and 10-fold, respectively. In contrast, acetyl transacylase activity was increased 6.6-fold in the Arg-606 --> Ala mutant and 1.7-fold in the Arg-606 --> Lys mutant. Kinetic studies revealed that selectivity of the enzyme for acetyl-CoA was increased >16,000-fold by the Ala mutation and 16-fold by the Lys mutation. Activity toward medium chain length acyl thioesters was also increased >3 orders of magnitude by mutation of Arg-606, so that the Ala-606 enzyme is an effective medium chain length fatty acyl transacylase. These results indicate that Arg-606 plays an important role in the binding of malonyl moieties to the transacylase domain but is not required for binding of acetyl moieties; these results are also consistent with a mechanism whereby interaction between the positively charged guanidinium group of Arg-606 and the free carboxylate anion of the malonyl moiety serves to position this substrate in the active site of the enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure of the acyltransferase domain of the iterative polyketide synthase in enediyne biosynthesis.

Biosynthesis of the enediyne natural product dynemicin in Micromonospora chersina is initiated by DynE8, a highly reducing iterative type I polyketide synthase that assembles polyketide intermediates from the acetate units derived solely from malonyl-CoA. To understand the substrate specificity and the evolutionary relationship between the acyltransferase (AT) domains of DynE8, fatty acid synth...

متن کامل

A Cerulenin Insensitive Short Chain 3-Ketoacyl-Acyl Carrier Protein Synthase in Spinacia oleracea Leaves.

A cerulenin insensitive 3-ketoacyl-acyl carrier protein synthase has been assayed in extracts of spinach (Spinacia oleracea) leaf. The enzyme was active in the 40 to 80% ammonium sulfate precipitate of whole leaf homogenates and catalyzed the synthesis of acetoacetyl-acyl carrier protein. This condensation reaction was five-fold faster than acetyl-CoA:acyl carrier protein transacylase, and the ...

متن کامل

Catalysis, specificity, and ACP docking site of Streptomyces coelicolor malonyl-CoA:ACP transacylase.

Malonyl-CoA:ACP transacylase (MAT), the fabD gene product of Streptomyces coelicolor A3(2), participates in both fatty acid and polyketide synthesis pathways, transferring malonyl groups that are used as extender units in chain growth from malonyl-CoA to pathway-specific acyl carrier proteins (ACPs). Here, the 2.0 A structure reveals an invariant arginine bound to an acetate that mimics the mal...

متن کامل

Methylmalonyl coenzyme A selectivity of cloned and expressed acyltransferase and beta-ketoacyl synthase domains of mycocerosic acid synthase from Mycobacterium bovis BCG.

Methyl-branched fatty acids and polyketides occur in a variety of living organisms. Previous studies have established that multifunctional enzymes use methylmalonyl coenzyme A (CoA) as the substrate to generate methyl-branched products such as mycocerosic acids and polyketides. However, we do not know which of the component activities show selectivity for methylmalonyl-CoA in any biological sys...

متن کامل

Methylmalonyl Coenzyme A Selectivity of Cloned and Expressed Acyltransferase and b-Ketoacyl Synthase Domains of Mycocerosic Acid Synthase from Mycobacterium bovis BCG

Methyl-branched fatty acids and polyketides occur in a variety of living organisms. Previous studies have established that multifunctional enzymes use methylmalonyl coenzyme A (CoA) as the substrate to generate methyl-branched products such as mycocerosic acids and polyketides. However, we do not know which of the component activities show selectivity for methylmalonyl-CoA in any biological sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 18  شماره 

صفحات  -

تاریخ انتشار 1997